Formula for calculating the $N(e, e'\pi)N$ cross sections Prepared by T.-S. H. Lee (September 1, 2019)

For the pion electroproduction, ($e(p_e) + N(p_N) \rightarrow e'(p'_e) + \pi(k) + N(p'_N)$), the differential cross section is conventionally written as

$$\frac{d\sigma}{dE'_{e}d\Omega_{e'}d\Omega_{\pi}} = \Gamma \frac{d\sigma^{v}}{d\Omega_{\pi}} , \qquad (1)$$

where $Q^2 = -q^2$, $q = p_e - p'_e = (\omega_L, \mathbf{q}_L)$, $W = \sqrt{(p_N + q)^2}$, and

$$\Gamma = \frac{\alpha q_L^{\gamma}}{2\pi^2 Q^2} \frac{E_e'}{E_e} \frac{1}{1 - \epsilon}.$$
 (2)

Here, we have defined $\alpha = e^2/4\pi = 1/137$ and the effective photon energy in the laboratory system and ϵ are given as

$$q_L^{\gamma} = \frac{W^2 - m_N^2}{2m_N} \,, \tag{3}$$

$$\epsilon = \left[1 + \frac{2\boldsymbol{q}_L^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right]^{-1},\tag{4}$$

where θ_e is the angle between the outgoing and incoming electrons, and m_N is the nucleon mass and q_L is momentum transfer in the laboratory system.

The differential cross section $d\sigma^v/d\Omega_{\pi}$ in Eq. (1) is defined in final πN center of mass frame with the following coordinate system:

$$\hat{z} = \hat{q} = \frac{q}{|q|} \tag{5}$$

$$\hat{y} = \frac{\boldsymbol{q} \times \boldsymbol{k}}{|\boldsymbol{q} \times \boldsymbol{k}|} \tag{6}$$

$$\hat{x} = \hat{y} \times \hat{z} \tag{7}$$

We then have the following expression:

$$\frac{d\sigma^{v}}{d\Omega_{\pi}} = \frac{d\sigma_{T}}{d\Omega_{\pi}} + \epsilon \frac{d\sigma_{L}}{d\Omega_{\pi}} + \epsilon \frac{d\sigma_{TT}}{d\Omega_{\pi}} \cos 2\phi_{\pi} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{d\Omega_{\pi}} \cos \phi_{\pi} + h_{e}\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{d\Omega_{\pi}} \sin \phi_{\pi},$$
(8)

where h_e is the helicity of the incoming electron, ϕ_{π} is the pion angle measured from the e-e' scattering plane of electron, and

$$\frac{d\sigma_T}{d\Omega_{\pi}} = \frac{|\mathbf{k}|}{|\mathbf{q}_{\gamma}|} \sum_{min} \frac{F^{xx} + F^{yy}}{2} , \qquad (9)$$

$$\frac{d\sigma_L}{d\Omega_{\pi}} = \frac{|\mathbf{k}|}{|\mathbf{q}_{\gamma}|} \sum_{snin} \frac{Q^2}{|\mathbf{q}|^2} F^{00} , \qquad (10)$$

$$\frac{d\sigma_{TT}}{d\Omega_{\pi}} = \frac{|\mathbf{k}|}{|\mathbf{q}_{\gamma}|} \sum_{spin} \frac{F^{xx} - F^{yy}}{2} , \qquad (11)$$

$$\frac{d\sigma_{LT}}{d\Omega_{\pi}} = \frac{|\boldsymbol{k}|}{|\boldsymbol{q}_{\gamma}|} \sum_{spin} (-1) \sqrt{\frac{Q^2}{|\boldsymbol{q}|^2}} Re(F^{x0}) , \qquad (12)$$

$$\frac{d\sigma_{LT'}}{d\Omega_{\pi}} = \frac{|\mathbf{k}|}{|\mathbf{q}_{\gamma}|} \sum_{spin} \sqrt{\frac{Q^2}{|\mathbf{q}|^2}} Im(F^{x0}) . \tag{13}$$

Here q is the momentum transfer to the initial nucleon and k is the pion momentum in the center of mass system of the final πN state:

$$\omega = \frac{W^2 - M_N^2 - Q^2}{2W} \,, \tag{14}$$

$$|\boldsymbol{q}| = \sqrt{Q^2 + \omega^2} \,, \tag{15}$$

$$|\mathbf{k}| = \sqrt{(\frac{W^2 + m_{\pi}^2 - M_N^2}{2W})^2 - m_{\pi}^2} ,$$
 (16)

and

$$|\mathbf{q}_{\gamma}| = \frac{W^2 - M_N^2}{2W} \,. \tag{17}$$

Here ω and \mathbf{q}_{γ} are the energy transfer and the effective photon energy in the center of mass system. Integrating pion angles, Eqs.(1) and (8) lead to

$$\frac{d\sigma}{dE'_{e}d\Omega_{e'}}(Q^2, W) = \Gamma[\sigma_T(Q^2, W) + \epsilon\sigma_L(Q^2, W)]. \tag{18}$$

where

$$\sigma_{T/L} = \sum_{\pi^+, \pi^0} \int d\Omega_{\pi} \frac{d\sigma_{T/L}}{d\Omega_{\pi}}$$
(19)

In the coordinate system defined by Eqs.(5)-(7), the pion momentum k is on the x-z plane. We thus can define

$$\hat{k} = \mathbf{k}/|\mathbf{k}| = \cos\theta \hat{z} + \sin\theta \hat{x} , \qquad (20)$$

where θ is the angle between the outgoing pion and the virtual photon. The quantities F^{ij} with i, j = x, y, 0 in Eqs. (9)-(13) are defined as

$$\sum_{spin} F^{ij} = \frac{1}{2} \sum_{m_{s_i}, m_{s_f}} \langle m_{s_f} | \mathcal{F}^i | m_{s_i} \rangle \langle m_{s_f} | \mathcal{F}^j | m_{s_i} \rangle^* , \qquad (21)$$

where m_s is the z-component of the nucleon spin, and \mathcal{F}^i is defined by the Chew-Goldberger-Low-Nambu (CGLN) amplitude $\mathcal{F}_{CGLN} = \mathcal{F}^{\mu} \epsilon_{\mu}$.

The CGLN amplitude can be expressed in terms of Pauli operator σ , \hat{q} , \hat{k} and the photon polarization vector $\epsilon^{\mu} = (\epsilon_0, \epsilon)$

$$\mathcal{F}^{\mu}\epsilon_{\mu} = -(i\boldsymbol{\sigma}\cdot\boldsymbol{\epsilon}_{\perp}F_{1} + \boldsymbol{\sigma}\cdot\hat{k}\boldsymbol{\sigma}\cdot\hat{q}\times\boldsymbol{\epsilon}_{\perp}F_{2} + i\boldsymbol{\sigma}\cdot\hat{q}\hat{k}\cdot\boldsymbol{\epsilon}_{\perp}F_{3} + i\boldsymbol{\sigma}\cdot\hat{k}\hat{k}\cdot\boldsymbol{\epsilon}_{\perp}F_{4} + i\boldsymbol{\sigma}\cdot\hat{q}\hat{q}\cdot\boldsymbol{\epsilon}F_{5} + i\boldsymbol{\sigma}\cdot\hat{k}\hat{q}\cdot\boldsymbol{\epsilon}F_{6}) + i\boldsymbol{\sigma}\cdot\hat{k}\epsilon_{0}F_{7} + i\boldsymbol{\sigma}\cdot\hat{q}\epsilon_{0}F_{8},$$
(22)

where $\epsilon_{\perp} = \hat{q} \times (\epsilon \times \hat{q})$. By using Eq.(20) and choosing $\epsilon^{\mu} = (\epsilon_0, \epsilon) = (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)$ to evaluate Eq.(22), we then have

$$\mathcal{F}^x = i\sigma_x(F_1 - \cos\theta F_2 + \sin^2\theta F_4 + i\sigma_z\sin\theta (F_2 + F_3 + \cos\theta F_4) , \qquad (23)$$

$$\mathcal{F}^y = i\sigma_y(F_1 - \cos\theta F_2) - \sin\theta F_2 , \qquad (24)$$

$$\mathcal{F}^0 = i\sigma_z(\cos\theta F_7 + F_8) + i\sigma_y\sin\theta F_7. \tag{25}$$

The amplitudes F_i are calculated from the multipole amplitudes $E_{l\pm}$, $M_{l\pm}$, $S_{l\pm}$ and $L_{l\pm}$ of the $\gamma^* + N \to \pi N$ process:

$$F_{1} = \sum_{l} [P'_{l+1}(x)E_{l+1}(Q^{2}, W) + P'_{l-1}(x)E_{l-1}(Q^{2}, W) + lP'_{l+1}(x)M_{l+1}(Q^{2}, W) + (l+1)P'_{l-1}(x)M_{l-1}(Q^{2}, W)], \qquad (26)$$

$$F_2 = \sum_{l} [(l+1)P'_l(x)M_{l+}(Q^2, W) + lP'_l(x)M_{l-}(Q^2, W)], \qquad (27)$$

$$F_{3} = \sum_{l} [P_{l+1}''(x)E_{l+}(Q^{2}, W) + P_{l-1}''(x)E_{l-}(Q^{2}, W) - P_{l+1}''(x)M_{l+}(Q^{2}, W) + P_{l-1}''(x)M_{l-}(Q^{2}, W)], \qquad (28)$$

$$F_4 = \sum_{l} [-P_l''(x)E_{l+}(Q^2, W) - P_l''(x)E_{l-}(Q^2, W) + P_l''(x)M_{l+}(Q^2, W) - P_l''(x)M_{l-}(Q^2, W)]$$

$$F_5 = \sum_{l} [(l+1)P'_{l+1}(x)L_{l+1}(Q^2, W) - lP'_{l-1}(x)L_{l-1}(Q^2, W)], \qquad (30)$$

$$F_6 = \sum_{l} \left[-(l+1)P_l'(x)L_{l+}(Q^2, W) + lP_l'(x)L_{l-}(Q^2, W) \right], \tag{31}$$

$$F_7 = \sum_{l} \left[-(l+1)P_l'(x)S_{l+}(Q^2, W) + lP_l'(x)S_{l-}(Q^2, W) \right], \tag{32}$$

$$F_8 = \sum_{l} [(l+1)P'_{l+1}(x)S_{l+1}(Q^2, W) - lP'_{l-1}(x)S_{l-1}(Q^2, W)], \qquad (33)$$

where $x = \hat{q} \cdot \hat{k}$, $P_L(x)$ is the Legendre function, $P'_L(x) = dP_L(x)/dx$ and $P''_L(x) = d^2P_L(x)/d^2x$. For the photo-production process $\gamma N \to \pi N$, the differential cross section is $d\sigma_T/d\Omega_{\pi}$ with $Q^2 = 0$.

The ANL-Osaka multipole amplitudes $E_{l\pm}(Q^2, W)$, $M_{l\pm}(Q^2, W)$, and $L_{l\pm}(Q^2, W)$ for W = 1080 - 2000 MeV and $Q^2 = 0 - 3$ (GeV/c)² are presented on the webpage.